
How to learn a Hamiltonian



Talk in a slide

Hamiltonian learning is about what is 
possible to learn in a quantum world.

Spooky things happen that cannot happen 
in classical settings.

I’ll explain what I like about this problem.

1. Motivating Hamiltonian learning
2. Defining the basic objects
3. An example: Hamiltonian learning from 

real-time evolution
4. The broader landscape



Motivation: experiments at scale

I’m building a quantum device to explore a system’s behavior/
experimentally validate a prediction/

do something cool.

> How do I know that I succeeded?
> How do I benchmark my system?
> How do I diagnose issues?
> How do I know what’s going on in general?

Examples from Wright, How to learn a quantum state
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Teleporting one qubit between from La Palma to Tenerife

605 runs

Examples from Wright, How to learn a quantum state



Motivation: experiments at scale

Teleporting one qubit between from La Palma to Tenerife

605 runs

Examples from Wright, How to learn a quantum state



Motivation: experiments at scale

Preparing an eight-qubit highly entangled state
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Motivation: experiments at scale

These papers use quantum state tomography, which is inherently not scalable:

# runs is exponential in n = the number of qubits.

We want a protocol which scales as poly(n) for “physically reasonable” states.

Examples from Wright, How to learn a quantum state



There are many choices for what reasonable hypothesis classes should be:

> Quantum circuits describe systems from quantum computers;
> Tensor networks describe systems from classical simulation;
> Hamiltonians describe systems from models of physics;

We believe these classes are interchangeable in some senses, but this is not rigorous.

Motivation: why learn Hamiltonians?



1. The Hamiltonian is a description of the interactions in a system at the particle scale;
2. We expect the particle-scale features to be “feelable”;
3. So, we should be able to run experiments to find them efficiently.

If it’s not possible, then the Hamiltonian has an undetectable degree of freedom.

Hamiltonian learning models the task of a physicist:

Can I determine the underlying interactions of a system from measuring it?

Motivation: a basic epistemic question



Background: Pauli matrices

One qubit is a 2 × 2 Hermitian matrix.

A useful basis is the basis of Pauli matrices.

> tr(PQ) = 0 unless P = Q;
> reflections;
> nice product structure.



We will work in a system of n qubits, i.e. 
complex matrices of dimension 2n × 2n.

The analogous basis is that of tensor products 
of Pauli matrices:

P = P(1) ⊗ P(2) ⊗ … ⊗ P(n)

tr(PQ) = 0 unless P = Q; then, tr(PQ) = tr(I) = 2n;

We use the notation e.g.

Z2 = I ⊗ Z ⊗ I ⊗ … ⊗ I.

Background: Pauli matrices



Example:

(X1Y2Z3) (Z2Z3Z4) = X1 (Y2Z2) (Z3Z3) Z4 = i X1X2Z4

The support of a Pauli: supp(X1X2Z4) = {1, 2, 4}.

The support of an operator A is the set of qubits 
which A is not the identity on.

The commutator [A, B] = AB - BA.
[X, Y] = 2iZ
[Pi , Qj] = 0 when i ≠ j.

Background: Pauli matrices



A local Hamiltonian on n sites is

H = λ1E1 + … + λmEm

where every Ea is a Pauli with O(1) support 
and -1 ≤ λa ≤ 1.

The degree of H is the degree of the 
interaction graph, G, with vertices [n] and 
hyperedges {supp(Ea)}a.

Background: local Hamiltonian

Local Hamiltonians model spin systems with 
few-body interactions.

E₁ E₃

E₂ E₄

52 3 41

1D Ising model:



Background: local Hamiltonian

Local Hamiltonians model spin systems with 
few-body interactions.

E₁ E₃

E₂ E₄

52 3 41

XXX Heisenberg model (aka “quantum max-cut”):

A local Hamiltonian on n sites is

H = λ1E1 + … + λmEm

where every Ea is a Pauli with O(1) support 
and -1 ≤ λa ≤ 1.

The degree of H is the degree of the 
interaction graph, G, with vertices [n] and 
hyperedges {supp(Ea)}a.



What are the mathematical consequences of locality?

The evolution of an operator A is e-iHtAeiHt.

To control this, we can try to truncate it to low degree. Consider the series expansion

Generally, ∥-iHt∥ ∼ mt, which means we can only truncate at degree ∼mt.

But we can use the locality structure to get a better bound.



Locality implies that some series converge quickly

 

Lemma. If |supp(A)| = O(1), ∥[H, A]k∥ < k! Ck for a constant C.

So, we can truncate at order t.

In physics language, “if A is local then e-iHtAeiHt is quasilocal”.



Locality implies that some series converge quickly

Lemma. If |supp(A)| = O(1), ∥[H, A]k∥ < k! Ck for a constant C.

We consider a specific example:

E₁ E₃

E₂ E₄

52 3 41



Locality implies that some series converge quickly

Lemma. If |supp(A)| = O(1), ∥[H, A]k∥ < k! Ck for a constant C.

We consider a specific example:

[H, A]

[H, A]3

[H, A]2

52 3 41



Background: the learning task

Input: description of the terms E1, …, Em;

some kind of access to H.

Output: estimates of the coefficients λ1, …, λm.

NB: this is parameter learning. More 
common classically is structure learning.

Parameter learning in the quantum setting is 
already non-trivial.

structure learning of (classical) MRFs: [Klivans, Meka ‘17]



An example: learning from real-time evolutions

Simplification: “statistical query model”.

We can estimate every tr(Pe-iHtQeiHt)/2n for 
|supp(P)|, |supp(Q)| = O(1) to ε error.

evolution time: O(t log(n)/ε²)

(Classical intuition: estimating every 
low-weight Fourier coefficient of f from 
O(log(n)/ε²) random queries.)

[Huang, Kueng, Preskill ‘20]; [Haah, Kothari, T ‘24]

Input: description of the terms E1, …, Em;

ability to apply e-iHt for every t > 0.

Output: estimates of the coefficients λ1, …, λm.

Track evolution time: applying e-iHt costs t, 
sum over the entire algorithm



A simple Hamiltonian learning algorithm

Consider a term E1 = X1Y2.

Take P to not commute with E1:
Let Q = i P E1:

P = Y1
Q = i (Y1) (X1Y2) = Z1Y2

Then tr(Pe-iHtQeiHt)/2n = 2λat + O(t^2) for t << 1.

Take time t = ε and estimate to error α = ε2.

total evolution time: O(log(n)/ε3)

Input: description of the terms E1, …, Em;

α-estimates of every tr(Pe-iHtQeiHt)/2n 
for |supp(P)|, |supp(Q)| = O(1)

Output: estimates of the coefficients λ1, …, λm.

total evolution time: O(t log(n)/α²)
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Improving by considering more of the series

[Haah, Kothari, T ‘24]

It actually suffices to take

time t = Θ(1) and error α = ε.

The observables are a polynomial system in the 
parameters with a strong decay with degree, so we can 
solve for the coefficients.

total evolution time: O(log(n)/ε2)

Are we done?

No, log(n)/ε is possible! [Huang, Tong, Fang, Su ‘24]



Learning in 1/ε evolution time (the “Heisenberg limit”)



Learning in 1/ε evolution time (the “Heisenberg limit”)

Consider the single-qubit example:

It suffices to estimate ϕ = e-iλ to ε error.

Take t = 1, 2, 4, 8, …, 1/ε but error α = Θ(1).

This gives constant-error estimates for ϕ1, ϕ2, ϕ4, …

with evolution time 1/ε.



Learning in 1/ε evolution time (the “Heisenberg limit”)



Hamiltonian learning more broadly

Learning from dynamics: we are given the 
ability to evolve by e-iHt.

Complexity measure: total evolution time

1. poly(m, 1/ε)
2. log(m)/ε²
3. log(m)/ε

using locality-based series expansions, 
“Pauli analysis”, error amplification

1, [Cramer, Plenio, Flammia, Somma, Gross, Bartlett, Landon-Cardinal, 
Poulin, Liu '11];
2, [Haah, Kothari, T ‘24];
3, [Huang, Tong, Fang, Su ’24] 



Hamiltonian learning more broadly

Learning from static states: we are given a 
state at equilibrium with respect to e-iHt.

Gibbs state: ρβ ∝ e−βH / tr(e−βH)

Complexity measure: sample complexity

1. polynomial samples
2. polynomial time (sum-of-squares 

hierarchy)
3. better β dependence (fine-tuned 

polynomial approx of ex)

Learning from dynamics: we are given the 
ability to evolve by e-iHt.

Complexity measure: total evolution time

Current algorithms use:

1. series expansions exploiting locality
2. “Pauli analysis”,
3. error amplification

1, [Anshu, Arunachalam, Kuwahara, Soleimanifar ’21];
2, [Bakshi, Liu, Moitra, T ’24];
3, [Narayanan ‘24]



Hamiltonian learning more broadly

Related problems:

> Structure learning [Bakshi, Liu, Moitra, T 
’24] refined analysis of series, “Pauli” 
Goldreich–Levin

> Testing [Gutiérrez ‘24] more Pauli 
analysis

> Agnostic learning [Grewal, Iyer, 
Kretschmer, Liang ‘24]

Learning from ground states: given ρ∞

Learning from dynamics: we are given the 
ability to evolve by e-iHt.

Complexity measure: total evolution time

Current algorithms use:

1. series expansions exploiting locality
2. “Pauli analysis”,
3. error amplification



Thank you!

credit: Kristina Armitage


