How to learn a Hamiltonian



Talk in a slide

Hamiltonian learning is about what is
possible to learn in a quantum world.

Spooky things happen that cannot happen
in classical settings.

I'll explain what | like about this problem.

Motivating Hamiltonian learning
Defining the basic objects

An example: Hamiltonian learning from
real-time evolution

The broader landscape



Motivation: experiments at scale

I'm building a quantum device to explore a system’s behavior/
experimentally validate a prediction/
do something cool.

> How do | know that | succeeded?

> How do | benchmark my system?

> How do | diagnose issues?

> How do | know what's going on in general?

Examples from Wright, How to learn a quantum state



Motivation: experiments at scale

Quantum teleportation over 143 kilometres using
active feed-forward

Xiao-Song Ma & Thomas Herbst, Thomas Scheidl, Daging Wang, Sebastian Kropatschek, William

Thomas Jennewein, Rupert Ursin & Anton Zeilinger &2

Nature 489, 269-273 (2012) | Cite this article

Teleporting one qubit between from La Palma to Tenerife

605 runs

Examples from Wright, How to learn a quantum state



Figure 4: Quantum process tomography of quantum teleportation without feed-

forward.

Examples from Wright, How to learn a quantum state



Motivation: experiments at scale

Scalable multiparticle entanglement of trapped ions

Nature 438, 643-646 (2005) | Cite this article

Preparing an eight-qubit highly entangled state

656100 runs

Examples from Wright, How to learn a quantum state



Figure 1: Absolute values, | p |, of the reconstructed density matrix ofa| Wg) state
as obtained from quantum state tomography.
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Motivation: experiments at scale

These papers use quantum state tomography, which is inherently not scalable:
# runs is exponential in n = the number of qubits.

We want a protocol which scales as poly(n) for “physically reasonable” states.

Examples from Wright, How to learn a quantum state



Motivation: why learn Hamiltonians?

There are many choices for what reasonable hypothesis classes should be:

> Quantum circuits  describe systems from quantum computers;
> Tensor networks  describe systems from  classical simulation;
> Hamiltonians describe systems from  models of physics;

We believe these classes are interchangeable in some senses, but this is not rigorous.



Motivation: a basic epistemic question

1. The Hamiltonian is a description of the interactions in a system at the particle scale;
2. We expect the particle-scale features to be “feelable”;
3. So, we should be able to run experiments to find them efficiently.

If it's not possible, then the Hamiltonian has an undetectable degree of freedom.

Hamiltonian learning models the task of a physicist:

Can | determine the underlying interactions of a system from measuring it?



Background: Pauli matrices

One qubitis a 2 x 2 Hermitian matrix.

A useful basis Is the basis of Pauli matrices.

> tr(PQ) =0 unless P = Q;
> reflections;
> nice product structure.

0 —i 10

i 0)’ “=10 —1)
X | X Y YA
X | I i/ -1y
Y | -iZz [ 1X

/Z | Y —-iX I



Background: Pauli matrices I:(é (1)) X:((l) (1))

We will work in a system of n qubits, i.e. 0 i 1 0
complex matrices of dimension 2" x 2", Y = —1 , T = .
i 0 0 -1
The analogous basis is that of tensor products
of Pauli matrices:
p=PVeopde_  eph x | X Y 7
tr(PQ) = 0 unless P = Q; then, tr(PQ) = tr(I) = 2" X I 17 —iY
We use the notation e.g. Y | -1/ I 1X
Z,=18Zele.. 8| Z | ¥ —-iX I




Background: Pauli matrices (Vo) [0
1 1 0)°

Example: . 0 i . 10
(XYZ)(2,2.2) =X (v,Z) (22))2,=1XXZ, i o)’ o -1/

The support of a Pauli: supp(X X.,Z,) = {1, 2, 4.

The support of an operator A is the set of qubits

which A is not the identity on. X %4 Y Z

The commutator [A, B] = AB - BA. X / iz —iY
[X Y]=2iZ Y | =17 i 1X
[Pw Qj]=0vvhen i # . 7 oy iy 7




Background: local Hamiltonian

A local Hamiltonian on n sites is Local Hamiltonians model spin systems with
_ few-body interactions.
H=AE +..+A E_

where every E_is a Pauli with O(7) support E, E,
and -1<A <1,

1 2 ] /3 4 ] 5
The degree of H is the degree of the [. (.J L.W {‘J ‘}

interaction graph, G, with vertices [n] and
hyperedges {supp(E )} .

1D Ising model:

H 22122 +ZQZ?, +ZgZ4+. .



Background: local Hamiltonian

A local Hamiltonian on n sites is Local Hamiltonians model spin systems with

H=AE +..+AE few-body interactions.
where every E_is a Pauli with O(7) support E, E,
and—1s)\as1. 1 > N ,3 i N :
The degree of H is the degree of the [ . { . J L . W { ‘ J ‘ }
interaction graph, G, with vertices [n] and ~ 7

E2 E4

hyperedges {supp(E )} .

XXX Heisenberg model (aka “quantum max-cut”):

H=- Z (X Xy + Y, Yo + Z4Z,) +h Z %
(u,v)eG ie[n]



What are the mathematical consequences of locality?

The evolution of an operator A is eftAe'*.

To control this, we can try to truncate it to low degree. Consider the series expansion
—-iHt 4 iHt : L 2 : 1% 2
e iH 4 :(I—LHL‘+§(1Ht) —...)A(I+1Ht+§(1Ht) +)

Generally, /-iHt/ ~ mt, which means we can only truncate at degree ~mt.
But we can use the locality structure to get a better bound.
. . > 1
=iflt 4 iHt — [
e H! 4o _;;k![ iHt, A,

= A+ [-iHt, A] + %[—in, [—iHt, A]] +. ..



Locality implies that some series converge quickly

piHL 4 iH! S lt)k
Ae Z - [-iHt, 4], Z
k=0

Lemma. If [supp(A)| = 0(1), /[H, Al // < R! Ck for a constant C.
So, we can truncate at order t.

In physics language, “if A is local then eMAe is quasilocal”.



Locality implies that some series converge quickly

Lemma. If [supp(A)| = 0(1), /[H, Al // < R! Ck for a constant C.

We consider a specific example:

}1==XHYE-FAQY%-FA%Y24-.”

‘e [o][e][e

n—1 n—1
[H, 4] = | " Xi¥iu1, 21| = Y [Xi¥iur, Z1] = [X1Ya, Z1] = -2i1Yy
i:l 221
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Locality implies that some series converge quickly

Lemma. If [supp(A)| = 0(1), /[H, Al // < R! Ck for a constant C.

We consider a specific example: / [H, Al
@ A I
H=XYy+ XoYg+ XgYy +... ] ) 3 4
iz [ ® o 1 o ‘o
\\ [H, AL .

n—1 n—1
[H, 4] = | " Xi¥iu1, 21| = Y [Xi¥iur, Z1] = [X1Ya, Z1] = -2i1Yy
i:l Z:1

Ve Bz IDERYARX Y SVANE



Background: the learning task

Input: description of the terms E,, .., E NB: this is parameter learning. More

: common classically is structure learning.
some kind of access to H.

Parameter learning in the quantum setting is

Output: estimates of the coefficients A, .., A . lreschy Fam=irisl

structure learning of (classical) MRFs: [Klivans, Meka ‘17]



An example: learning from real-time evolutions

Input: description of the terms E,, .., E

ml

Simplification: “statistical query model”.

ability to apply e for every t > 0. We can estimate every tr(Pe"Qe'tt) /2" for

Isupp(P)], [supp(Q)| = O(1) to € error.

Output: estimates of the coefficients A, .., A .

N . : evolution time: O(t log(n)/&?
Track evolution time: applying et costs t, (tlog(n)/e?)
sum over the entire algorithm (Classical intuition: estimating every

low-weight Fourier coefficient of f from

O(log(n)/€2) random queries.)

[Huang, Kueng, Preskill ‘20]; [Haah, Kothari, T ‘24]



A simple Hamiltonian learning algorithm

Input: description of the terms E,, .., E

a-estimates of every tr(Pe MQe't) /2"
for [supp(P)l, Isupp(Q)| = O(1)

Output: estimates of the coefficients A, .., A

total evolution time: O(t log(n)/a?)

m

Consider a term E =XY,

Take P to not commute with E:
letQ=iPE;

P=v,
Q=i(Y)(XY)=2Y,

Then tr(Pe'ftQe!tt) /2" = 2A t+0(t"2) for t << 1.
Take time t = € and estimate to error o = €%

total evolution time: O(log(n)/€3)



A simple Hamiltonian learning algorithm

tr(Pe HiQeH Yy jon

— tr(ethPe—thQ/Qn)

_ - Q

- tr((P +[iHL P+ F )2—)
IF[I=0(:2)

= tr((P +it[H, P])Q/2") + O(t?)

= tr((P + i it [E,, P])Q/Q") +0@2)

a=1

= 91,1 +O0(t?).

Consider a term E =XY,

Take P to not commute with E:
letQ=iPE;

P=v,
Q=i(Y)(XY)=2Y,

Then tr(Pe'ftQe!tt) /2" = 2A t+0(t"2) for t << 1.
Take time t = € and estimate to error o = €%

total evolution time: O(log(n)/€3)



Improving by considering more of the series

It actually suffices to take (A}, {tr(Pe_thQeth)/Q"}
ala

time t = ©(1) and error a = €.

1,

The observables are a polynomial system in the
parameters with a strong decay with degree, so we can
solve for the coefficients.

total evolution time: O(log(n)/&?)
Are we done?

No, log(n)/< is possible! [Huang, Tong, Fang, Su 24]

[Haah, Kothari, T ‘24]



Learning in 1/¢ evolution time (the “Heisenberg limit”)

Quantum-mechanical noise in an interferometer

Carlton M. Caves
Phys. Rev. D 23, 1693 — Published 15 April 1981

Letter | Published: 11 September 2011

A gravitational wave observatory operating beyond
the quantum shot-noise limit

The LIGO Scientific Collaboration

Nature Physics 7,962-965 (2011) | Cite this article

Letter | Published: 11 January 2016

Measurement noise 100 times lower than the
quantum-projection limit using entangled atoms

Nature 529, 505-508 (2016) | Cite this article




Learning in 1/¢ evolution time (the “Heisenberg limit”)

Consider the single-qubit example:
H=az; oHi=|!
. ’ ¢ . p—idt

It suffices to estimate ¢ = e to € error.
Taket=12 48, .. 1/ but error a = 0(1).
This gives constant-error estimates for ¢’, ¢? ¢* ...

with evolution time 1/¢.



Learning in 1/¢ evolution time (the “Heisenberg limit”)

Weak estimates P of powers of ¢

better estimate

OOOT

Preimages of the estimates




Hamiltonian learning more broadly

Learning from dynamics: we are given the
ability to evolve by e,

Complexity measure: total evolution time

1. poly(m, 1/¢€)
2. log(m)/e?
3. log(m)/e

using locality-based series expansions,
“Pauli analysis”, error amplification

1, [Cramer, Plenio, Flammia, Somma, Gross, Bartlett, Landon-Cardinal,
Poulin, Liu "11];

2, [Haah, Kothari, T 24];

3, [Huang, Tong, Fang, Su '24]



Hamiltonian learning more broadly

Learning from dynamics: we are given the Learning from static states: we are given a
ability to evolve by e, state at equilibrium with respect to e,
Complexity measure: total evolution time Gibbs state: Pg < e Pt / tr(e’PH)
Current algorithms use: Complexity measure: sample complexity

1. series expansions exploiting locality 1. polynomial samples

2. “Pauli analysis”, 2. polynomial time (sum-of-squares

3. error amplification hierarchy)

3. Dbetter B dependence (fine-tuned
polynomial approx of )

1, [Anshu, Arunachalam, Kuwahara, Soleimanifar '21];
2, [Bakshi, Liu, Moitra, T '24];
3, [Narayanan 24]



Hamiltonian learning more broadly

Learning from dynamics: we are given the Related problems:

ability to evolve by e, . . .
> Structure learning [Bakshi, Liu, Moitra, T

Complexity measure: total evolution time '24] refined analysis of series, “Pauli”
Goldreich—-Levin

Current algorithm ; : 5 , .
g > US€ > Testing [Gutiérrez ‘24] more Pauli

1. series expansions exploiting locality analysis
2. “Pauli analysis”, > Agnostic learning [Grewal, lyer,
3. error amplification Kretschmer, Liang ‘24]

Learning from ground states: given p__



Thank you!

credit: Kristina Armitage



